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Abstract This article investigates how remotely sensed

lawn characteristics, such as parcel lawn area and parcel

lawn greenness, combined with household characteristics,

can be used to predict household lawn fertilization prac-

tices on private residential lands. This study involves two

watersheds, Glyndon and Baisman’s Run, in Baltimore

County, Maryland, USA. Parcel lawn area and lawn

greenness were derived from high-resolution aerial imag-

ery using an object-oriented classification approach. Four

indicators of household characteristics, including lot size,

square footage of the house, housing value, and housing

age were obtained from a property database. Residential

lawn care survey data combined with remotely sensed

parcel lawn area and greenness data were used to estimate

two measures of household lawn fertilization practices,

household annual fertilizer nitrogen application amount

(N_yr) and household annual fertilizer nitrogen application

rate (N_ha_yr). Using multiple regression with multi-

model inferential procedures, we found that a combination

of parcel lawn area and parcel lawn greenness best predicts

N_yr, whereas a combination of parcel lawn greenness and

lot size best predicts variation in N_ha_yr. Our analyses

show that household fertilization practices can be effec-

tively predicted by remotely sensed lawn indices and

household characteristics. This has significant implications

for urban watershed managers and modelers.

Keywords Lawn fertilization � Lawn greenness �
Remote sensing � Socioeconomic characteristics �
Modeling � Object-oriented classification � LTER

Introduction

With the expansion of urban areas and residential devel-

opment, turf grass has become a dominant land cover type

in urban areas (Robbins and Birkenholtz 2003). It has been

estimated that there are 10 to 16 million hectares of lawn in

the continental United States, an area larger than that of

some major U.S. crops like barley, cotton, and rice (Milesi

and others 2005, Robbins and Birkenholtz 2003). On the

one hand, urban residential lawns provide a variety of

important benefits, such as aesthetic amenities (Jenkins

1994), carbon sequestration (Bandaranayake and others

2003), and mitigation of urban heat island effects (Spron-

ken-Smith and others 2000). On the other hand, residential

lawns may contribute significantly to water quality

impairment through the application of lawn chemicals and

fertilizers (Robbins and Birkenholtz 2003, Robbins and

others 2001).

The impacts of lawn fertilizers as nonpoint pollutant

sources on water quality have become increasing concerns

in recent years (Law and others 2004, Overmyer and others

2005, Schueler 1995a, Schueler 1995b, Swann 1999).

Before understanding how urban residential lawns and

lawn fertilizer applications affect water quality, it is crucial

to estimate the amount of fertilizer applied to urban

watersheds from residential lawn care practices, and

understand how household characteristics affect the rate of
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lawn fertilization application. Household surveys of lawn

care practices are a valuable tool towards this end, but their

effectiveness is limited by their relatively high costs (Law

and others 2004, Swann, 1999). This problem, however,

may be solved by modeling household lawn fertilization

practices using household characteristics and remote

sensing data, which can provide spatially distributed

information over large watershed areas.

Remote sensing has a tremendous advantage in pre-

dicting lawn care practices, as it can explicitly reveal

spatial patterns of lawn fertilization over a large geographic

area in a recurrent and consistent way. With the recent

availability of high spatial resolution satellite and aerial

imagery (e.g., QuickBird, IKONOS, and Emerge, etc.) and

advances in digital image processing, detailed lawn infor-

mation at the household level, such as parcel lawn

greenness and lawn area can be obtained for a large extent

of study area in a cost-effective way (Zhou and Troy in

press, Zhou and others 2006). Lawn greenness is likely to

be affected by households’ lawn care practices, such as

fertilizer application rates, and thus can reflect the differ-

ences in lawn fertilizer application rates. Moreover,

household lawn fertilizer application rate may vary with

parcel lawn area. We hypothesize that parcel lawn green-

ness and lawn area obtained from remotely sensed data

would correlate with differences in household fertilizer

application rates.

Lawns have long been considered as status symbols,

reflecting the different types of neighborhoods to which

people belong (Jenkins 1994). For this reason, lawn man-

agement choices, such as fertilization and watering, may

vary greatly among landowners (Grove and others 2006,

Law and others 2004). Researchers have found that nitro-

gen fertilizer application rates are related to socioeconomic

factors such as income and education (Osmond and Hardy

2004, Robbins and others 2001), and housing value, as well

as housing age (Law and others 2004). Therefore, we

hypothesize that household characteristics, such as housing

age, property value, lot size, and square footage of the

house, would correlate with and predict variation in

household fertilization practices. More importantly, we

hypothesize that a combination of remotely sensed lawn

indices and household characteristics provides a better

prediction of household lawn fertilization practices than

either would provide on their own.

The objectives of this study are to: (1) examine how

remotely sensed lawn indices, such as lawn greenness and

area, predict variation in household lawn fertilization

practices, (2) examine the relationship between household

characteristics and lawn fertilization practices, and (3)

investigate the usefulness of lawn indices and household

characteristics in predicting household lawn fertilization

practices.

Methods

Study Areas

This study involves two watersheds, Glyndon and Baisman’s

Run, in Baltimore County, Maryland, USA (Fig. 1). Both are

part of the Baltimore Ecosystem Study (BES) monitoring

network within the Gwynns Falls and Gunpowder water-

sheds. The Baltimore Ecosystem Study is a Long Term

Ecological Research (LTER) of the National Science

Foundation. Table 1 presents the summary characteristics of

land cover land use, demography, and housing development

in the two study watersheds. The Glyndon watershed is a

headwater catchment of the Gwynns Falls watershed, with an

area of about 0.8 km2 and is characterized by predominantly

residential land use, with a mix of other urban and open

space. It has experienced rapid suburbanization in recent

years as agricultural and forested lands have been developed.

Baisman’s Run is a part of the Gunpowder watershed,

with an area of approximately 3.81 km2. It is a forest-

dominated suburban area, characterized by low density,

large lot development on septic systems in the upper third

of the watershed (Law and others 2004).

Data Collection and Preprocessing

Geospatial Data

Geospatial data used in this study include high-resolution

color-infrared digital aerial imagery, LIght Detection And

Ranging (LIDAR) data, and parcel boundaries. The digital

aerial imagery from Emerge Inc. was collected on October

15, 1999. The imagery is 3-band color-infrared, with green

(510–600 nm), red (600–700 nm), and near-infrared bands

(800–900 nm). Pixel size for the imagery is about 0.6 m.

The LIDAR data used in this study were acquired in March

2002, with an average point spacing of approximately 1.3

m. A surface cover height model with 1-m spatial resolu-

tion was derived from the LIDAR data, which was used to

help differentiate between trees and herbaceous vegetation

(Zhou and Troy in press).

Property parcel boundaries used in this study were

obtained in digital format from Baltimore County, as cur-

rent of 2003. We created a new GIS layer by extracting

those parcels where lawn fertilizer application data were

available.

Lawn Fertilizer Application Data

Data on household lawn fertilization practices were

obtained from a household survey data collected in 2001
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(Law and others 2004). This survey was designed to esti-

mate household fertilizer application rates and water use

practices for lawns in the two watersheds. Data were

generated at the household level by a door-to-door survey.

The two watersheds were partitioned into 10 subdivisions,

with six in Glyndon and four in Baisman’s Run. Nine of the

subdivisions were single-family detached homes and one

was a townhouse development. For each subdivision, 10

residential, homeowner-occupied households were ran-

domly selected to participate in the survey. Seventy-three

of the homeowners responded to the survey, among which

43 reported fertilizing their lawns. Most of the identified

lawns were single-family detached homes (n = 39), with

only four observations from townhouses.

In the survey, fifteen questions were designed to deter-

mine the annual amount of fertilizer the homeowners

applied (Law 2003). For those homeowners who applied

fertilizers by themselves, the respondents were asked to

provide information on the frequency and amount of fer-

tilizer used per application, in addition to the product

name, but the specific type (e.g., N-P-K formulation) was

not identified by the survey respondent. A commonly used

fertilizer formulation (29N-3P-4K) was used to estimate

the fertilizer N application amount. The household annual

fertilizer N application amount was then estimated based

on the type and amount of fertilizer product, and the fre-

quency of application. For those homeowners who

employed a professional lawn care service, a follow-up

survey to the professional lawn care companies identified

in the household survey was conducted to estimate the

fertilizer N application amount.

To reduce the possible errors caused by the self-

reporting method, in the survey, different size bags of

fertilizers were shown to respondents to help them identify

the products they used, or the one that most closely

resembled the size bag they used, and how much of the bag

Fig. 1 The Glyndon and

Baisman’s Run watersheds,

located in Baltimore County,

MD, USA
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they used. The information provided by some of the

respondents was further confirmed by revisiting those

homeowners to check the product they used and the

amount per application (Law, personal communication).

The self-reporting method may lead to some bias (Law and

others 2004). Further details about the survey data can be

found in Law (2003) and Law and others (2004).

In this study, two indicators of household lawn fertil-

ization practices were derived from the survey data, and

used in later statistical analyses:

N_yr: estimated household annual application amount of

nitrogen (Kg/yr). N_yr was obtained for each of the 43

individual lawns from the survey data.

N_ha_yr: household annual application rate of nitrogen

(i.e., the application amount per unit lawn area) (Kg/ha/

yr). N_ha_yr was measured by dividing household

annual N application amount by parcel lawn area, which

was derived from remotely sensed imagery and parcel

data.

A large range was found for both the nitrogen application

amount (N_yr) and the application rate (N_ha_yr) in the

survey. A summary of N_yr and N_ha_yr is presented in

Table 2.

Socio-economic Data

For household characteristic measures, we used data from

the Maryland Property View dataset (Assessments and

Transaction database). Specifically, four indicators of

household and property characteristics were used in this

study: (1) lot size (lotsize), (2) size of building footprint

(housesize), (3) housing value (tax assessed market value

of the house) (housevalue), and (4) housing age

(houseage).

Measuring Parcel Lawn Greenness and Lawn Area

An object-oriented approach was used to measure the resi-

dential lawn greenness and lawn area at the parcel level

(Baatz and Schape 2000, Benz and others 2004, Blaschke

and Strobl 2001, DeFiniens Imaging 2004). Further details of

these methods are documented in Zhou and others (2006) and

Zhou and Troy (in press). We created a two-level hierar-

chical network of objects. In the lower level, we separated

lawns from other land cover types; in the upper level, we

summarized lawn greenness and lawn area by parcel.

We first segmented the image at a very fine scale, where

object primitives were considered to be internally homo-

geneous, i.e., there was only one land cover class in each

object primitive. However, a single real-world object, such

as a lawn, generally was comprised of several object

primitives due to spectral differences in different parts of

each lawn. The segmentation of the image at the parcel

level (the upper level) was created based on the thematic

layer, i.e., the parcel boundary layer. Once the

Table 2 Descriptive statistics of annual fertilizer N application

amount and fertilizer N application rate

Variables N Minimum Maximum Range Mean Std. Dev.

N_yr (kg/yr) 43 0.40 211.29 210.89 23.61 37.91

N_ha_yr

(kg/ha/yr)

43 10.51 369.68 359.17 97.57 88.28

Table 1 Summary

characteristics of land cover

land use, demography and

housing development in the

study watersheds (partly

adapted from Law and others

(2004))

a Values in parentheses refer to

the residential portion of the

Baisman’s Run watershed and

not the whole watershed

Glyndon Baisman’s Run

Watershed area (km2) 0.8 3.7

Residential 47% 34%

Forest 4% 66%

Open urban space 16% 0

Commercial, institutional 32% 0

Percent lawn area 15% 25.5 & (75.5%)a

Population density (pers/ha) 9.4 1(3.0)

Median yearly income ($) 66,154 80,854

Median household size (pers) 3 2

Median Age (yr) 35–44 45–54

Education attainment (Percentage of people 25 years

and over with at least a college degree)

43.0% 59.0%

Ethnicity (Percentage of the population who are ‘‘white’’) 87.3% 87.7%

Housing density (house/ha) 3.9 0.3(1.0)

Median of tax assessed market value of the house ($) 163,264 365,810

Average lot size (ha) 0.13 0.93

Average area of building footprint (m2) 150.2 302.6

Median housing age (yr) 37 19
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segmentations were done, a knowledge base of rules was

created to perform the classification at the lower level to

separate lawn primitives, i.e., segments of a lawn, from

other land covers. Lawn primitives were differentiated as

shaded and unshaded lawns. Other land covers classes

included buildings, pavement, coarse vegetation (trees and

shrubs), and bare soil (Zhou and Troy in press). A classi-

fication-based segmentation was then performed to merge

the spatially adjacent lawn segments in each parcel into a

larger object, that is, a lawn.

Lawn greenness and lawn area were summarized by

parcel at the upper level. As lawn greenness information

was blurred by shading for those shaded lawn areas, we

measured parcel lawn greenness by only using unshaded

portions of a lawn. But when calculating lawn area for each

parcel, both the shaded and unshaded portions of a lawn

were included. Moreover, we assumed in a residential

parcel, the ground under tree canopy that cannot be sensed

directly by remote sensing was covered by grass, and thus

were also counted as parcel lawn area. In other words, the

coverage area of tree canopy was also included in the total

parcel lawn area. A comparison between the values of

parcel lawn areas obtained from remotely sensed data with

those measured during the survey indicated the validity of

our assumption. Parcels were exported in vector format as

polygons with attached attributes of lawn greenness and

lawn area, which were used in later statistical analyses.

The Normalized Difference of Vegetation Index

(NDVI), which has been widely adopted and applied to

estimate vegetation productivity (Ricotta and others 1999),

vegetation biomass (Liang and others 2005), and pasture

growth rate (Hill and others 2004), was used to measure

lawn greenness in this study. A considerable amount of

research has demonstrated that NDVI is sufficiently stable

to permit meaningful comparisons of seasonal and inter-

annual changes in vegetation growth and activity because

the ratioing of NDVI reduces many forms of multiplicative

noises present in multiple bands of multiple-date imagery

(DeFries and others 1999, Jensen 2000).

In a lawn, a typical healthy green grass blade reflects

substantial amounts of near-infrared energy (ranging from

700–1200 nm) while absorbing much of the incident red

wavelength energy for photosynthesis (Jensen 2000). The

Normalized Difference of Vegetation Index, which is

derived from reflectance in the red and near-infrared

wavebands, provides a standardized method of comparing

vegetation greenness between remotely sensed images. The

formula of NDVI is given by:

NDVI ¼ NIR� RED

NIRþ RED
ð1Þ

where NIR is the reflectance in the near-infrared wave-

band, and RED is that of the red waveband. The

Normalized Difference of Vegetation Index value ranges

from -1 to 1, but typically between 0.1 and 0.7 for vege-

tation. Higher index values are associated with higher

levels of healthy vegetation cover, and higher possible

density of vegetation (Jensen 2000).

Specifically, we used mean, standard deviation, and

range of lawn NDVI as indicators of parcel lawn greenness.

We used mean NDVI to measure the level of lawn

greenness, while the standard deviation and range of NDVI

as measures of the homogeneity of lawn greenness. Each of

the 43 identified parcels was assigned a mean, standard

deviation, and range of NDVI, as well as the total area of

lawn. Figure 2 shows parcel lawns extracted from high-

resolution imagery and classified by lawn greenness mea-

sured by mean NDVI.

Statistical Analyses

We used multiple-linear regression to determine which

combination of variables best predicts variance in each of

the two lawn fertilization indicators, measured at the parcel

level: (1) logarithmically transformed household annual N

application amount (logN_yr), and (2) logarithmically

transformed household N application rate (logN_ha_yr).

Response variables were log transformed because a quan-

tile-by-quantile (Q-Q) plot for each of the two

untransformed indicators (i.e., N_yr and N_ha_yr) revealed

a departure from normality (Fig. 3). A Q-Q plot draws the

quantiles of a variable’s distribution against the quantiles of

a test distribution, in this case, the normal distribution, and

forms a 45-degree line when the observed values of the

variable are in conformity with normality. Explanatory

variables included parcel lawn area, lawn greenness and

household characteristics. A bivariate scatter plot also

suggested that the relationship between logN_yr and lawn

area might be better described by an exponential function

Fig. 2 Parcel lawns are extracted from high-resolution imagery, and

classified by lawn greenness measured by mean NDVI
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rather than a linear one, as shown in Fig. 4. Table 3 lists the

description, mean, and standard deviation for each variable.

We first examined how lawn area, lawn greenness, and

household characteristics could be used to predict lawn

fertilization practices, respectively. We then investigated

whether a combination of lawn area, lawn greenness, and

household characteristics could yield better predictions.

We used multi-model inferential procedures (Burnham

and Anderson 2002) to determine which of those variables

or some combinations best explain the variation in each of

the two response variables. This procedure, which is based

on minimization of Akaike’s Information Criterion (AIC)

(Akaike 1973, Akaike 1978), chooses the ‘‘best’’ out of a

series of models by finding the model that strikes the best

balance between model fit and model parsimony. More

specifically, it selects the model that best explains the data

with the fewest parameters. In this study, we used the

adjusted AIC considering the relatively small ratio of the

number of observations to the free parameters (Burnham

and Anderson 2002, Wagenmakers and Farrell 2004). We

also calculated the Akaike weight for each model, or the

probability of a given model being the best one among a

number of candidate models. Akaike weights are especially

useful when the difference of AIC values between two

models is small (Burnham and Anderson, 2002, Wagen-

makers and Farrell 2004). Separate comparisons were run

for each response variable.

Results

Eight models were developed and compared for each

response variable, yielding 16 models (Tables 4 and 5). We

present the model parameters for all the predictors, as well

as the significance levels. We also provide the r2 value,

AIC value, and Akaike weight for each model. For all

models within each model group (i.e., the same response

variable), we rank each model on the basis of its AIC value.

The results are listed in Tables 4 and 5.

In the model group for annual N application amount,

FA3 is the best model (table 4), which is given by:

logN yr ¼ �4:681þ 0:730 � logLA

þ 4:898 � NDVI mean ð2Þ

where approximately 72% of variation in annual N

application amount was explained jointly by logarithmi-

cally transformed lawn area (LogLA), and lawn greenness

(NDVI_mean), with the most variation explained by Lo-

gLA. Both coefficients of LogLA and NDVI_mean were

positive, with LogLA significant at the 99% confidence

level, and NDVI_mean at the 95% confidence level (see

table 4).

LogLA is the most significant variable in predicting

logN_yr, accounting for about 68% of the variation (model

FA1). The model with LogLA alone (FA1) was better than

any of the other models without LogLA (e.g., FA2 and

Fig. 3 (A) Q-Q plots for annual

fertilizer N application amount

(N_yr), (B) logarithmically

transformed annual fertilizer N
application amount (LogN_yr),

(C) annual fertilizer N
application rate (N_ha_yr), and

(D) logarithmically transformed

annual fertilizer N application

rate (LogN_ha_yr). The Q-Q

plot for each of the two

untransformed indicators (i.e.,

N_yr and N_ha_yr) revealed a

departure from normality (A
and C), whereas the

logarithmically transformed

variables closely follow a

normal distribution (B and D)
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FA5), suggesting the importance of that variable in pre-

dicting annual N application amount.

NDVI_mean was not significantly correlated with log-

N_yr in the absence of other variables (model FA2).

However, when controlling for the effect of parcel lawn

area (logLA), there was a significantly positive relationship

between NDVI_mean and logN_yr (model FA3). The Ak-

aike weights show model FA3 is clearly superior to model

FA1, suggesting the importance of NDVI_mean in pre-

dicting logN_yr.

Among the four indicators of household characteristics,

only housesize and housevalue significantly explained

variation in logN_yr, when controlling for the effects of the

other three household characteristic variables (model FA4).

The Akaike weights show no difference between model

FA4, the one using all four indicators of household char-

acteristics, and its simplified model, FA5, with only the two

significant variables (i.e., housesize and housevalue) as

predictors. The combination of the two variables (i.e.,

housesize and housevalue) could explain about 58% of

variation in logN_yr (model FA5). When accounting for

the effects of lawn area and lawn greenness, however, no

household characteristics significantly explained the vari-

ation in logN_yr at the 95% significance level (model FA6,

FA7, FA8).

For the models with logN_ha_yr as response variable

(table 5), FH8 is the best model, which is given by:

logN ha yr ¼ 2:383þ 6:419 � NDVI mean

� 0:0000799 � lotsize ð3Þ

where about 40% of variance in logN_ha_yr was

explained by a combination of lawn greenness (NDVI_-

mean) and lot size (lotsize). However, the probability of

FH8 being the best model is only 47% relative to 26% for

the second best model (FH7), and to 21% for the third best

(FH3), according to the Akaike weights. Therefore, while

FH8 is clearly one of the three best models, AIC provides

only relatively weak support for it being the best relative to

FH7 and FH3. At the same time, the probability of FH7

being the best model is almost the same as that of FH3.

Both LA and NDVI_mean were significantly correlated

with logN_ha_yr. Among the household variables, lotsize

was the only one that significantly correlated with

Fig. 4 (A) The bivariate scatter plot suggests that the relationship

between logarithmically transformed annual fertilizer N application

amount (logN_yr) and lawn area might be better described by an

exponential function rather than a linear one. (B) A linear relationship

between logN_yr and the log transformed lawn area (logLA)

Table 3 Description and

statistics of each variable

a Dependent variables
b Independent variables

Variables Description Mean Std. Dev.

logN_yra Logarithmically transformed household annual

application amount of nitrogen

2.23 1.42

logN_ha_yra Logarithmically transformed household annual

application rate of nitrogen

4.20 0.92

LAb(m2) Parcel lawn area 3785.5 4589.0

logLAb Logarithmically transformed parcel lawn area 7.24 1.62

NDVI_meanb Mean of lawn NDVI 0.332 0.056

Lotsizeb(m2) Lot size of the property 4494.68 5093.16

Housesizeb(m2) Size of building footprint 194.68 49.42

Housevalueb($) Tax assessed market value of the house 231,692 98,631

Houseagb(yr) Built year of the house 19.88 22.76
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logN_ha_yr when controlling the effects of other variables

of household characteristics (see model FH4). The AIC

score of FH5, using lotsize alone, was very close to that of

FH4 with all the four indicators of household characteris-

tics in predicting logN_ha_yr.

Housing age did not significantly explain the variation in

household fertilization practices, when accounting for the

effects of several other variables. However, when plotting

out the data of housing age and the logarithmically trans-

formed annual N application rates (logN_ha_yr) (Fig. 5), a

Table 4 Summary results for linear regression models predicting household annual N application amount

Model Explanatory variables/Parameter estimates (logN_ yr) Adjusted AIC Rank Akaike weight r2

FA1 logLA 109.1 4 0.1102 0.6793

0.725a

FA2 NDVI_mean 156.8 8 0.0000 0.0289

4.313

FA3 logLA NDVI_mean 106.2 1 0.4696 0.7165

0.730a 4.897b

FA4 lotsize housesize housevalue houseage 122.7 6 0.0001 0.6327

0.000063 -0.00116b 1.35E-5a 0.00918

FA5 housesize housevalue 123.6 7 0.0001 0.5753

-0.00117b 1.57E-5a

FA6 logLA NDVI_mean lotsize housesize housevalue houseage 113.8 5 0.0105 0.7394

0.669a 3.522 -2.2E-5 -0.00056 4.94E-6 -0.00247

FA7 LogLA NDVI_mean housesize housevalue 108.3 3 0.1643 0.7370

0.587a 3.762c -0.000579 5.3E-6c

FA8 LogLA NDVI_mean housevalue 107.5 2 0.2452 0.7250

0.624a 4.688b 2.19E-6

a significant at the 99% confidence level
b significant at the 95% confidence level
c significant at the 90% confidence level

Table 5 Summary results for linear regression models predicting household annual average N application rate

Model Explanatory variables/Parameter estimates (logN_ha_yr) Adjusted AIC Rank Akaike weight r2

FH1 LA 98.6 7 0.0078 0.2170

-0.0000940a

FH2 NDVI_mean 99.3 8 0.0055 0.2022

7.335a

FH3 LA NDVI_mean 92.0 3 0.2109 0.3763

-0.00008476b 6.554a

FH4 lotsize housesize housevalue houseage 97.5 6 0.0135 0.3740

-0.0000997b -0.000583 3.24E-6 -0.00863

FH5 lotsize 97.0 5 0.0173 0.2472

-8.87E-5a

FH6 LA NDVI_mean lotsize housesize housevalue houseage 96.9 4 0.0182 0.4699

0.00022 4.790b 0.00027c -0.00019 -5.908E-7 -0.00785

FH7 LA NDVI_mean lotsize 91.6 2 0.2576 0.4216

0.000202 6.254a -0.000256

FH8 NDVI_mean lotsize 90.4 1 0.4693 0.3996

6.419a -0.0000799a

a significant at the 99% confidence level
b significant at the 95% confidence level
c significant at the 90% confidence level
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linear relationship was clearly shown between those two

variables, where the housing age was less than 50 years. In

fact, a statistically significant negative relationship was

found between housing age and logarithmically trans-

formed annual N application rates (r2 = 0.23, p = 0.0018,

N = 40), when only using data with housing age less than

50 years. When controlling for the effects of the other

variables used in this study, but only using the observations

with housing age less than 50 years, we found that housing

age did not significantly explain variation in annual N

application amount (i.e., logN_yr). However, housing age

was a very useful predictor for annual N application rate

(i.e., logN_ha_yr). The combination of housing age and

lawn greenness best predicts annual N application rate

(r2 = 0.36, p = 0.0004, N = 40).

Discussion

Theoretical Implications

The results from our analyses suggest that remotely sensed

biophysical indices (i.e., lawn area and lawn greenness),

combined with household characteristics, can be used to

effectively predict household lawn fertilization practices. A

combination of lawn area and lawn greenness is the best

combination at predicting household annual N application

amount, whereas variation in household annual N appli-

cation rate is best explained jointly by lawn greenness and

lot size.

Lawn area is the most significant predictor of household

annual N application amount. A power law relationship

(i.e.,y ¼ axb), rather than a linear one, was found between

lawn area and annual N application amount. That is, there

was a linear relationship between logarithmically

transformed lawn area and logarithmically transformed

annual N application amount. The power of 0.725 (i.e., the

coefficient of logLA, in model FA1), less than 1, indicates

that landowners with bigger lawns would apply larger total

amounts of fertilizer N to their lawns, but with less per unit

lawn area. This was also indicated in the significantly

negative relationship between lawn area (LA) and N

application rates (FH1, table 5). Based upon our field

observations of a number of these residences, we propose

that this might be caused by the different lawn care prac-

tices directly around a homeowner’s house relative to the

remainder of the grass area (Fig. 6). In situations where

homeowners have very large lawns, homeowners tend to

intensively manage a lawn around their house: a primary

lawn. The remainder of the property tends to be managed

as tall grass or fields, which are mown only several times in

the summer: secondary lawn. These field observations

would be consistent with our results.

Lawn greenness is another useful predictor of household

annual N application amount. Our analyses indicated that

adding the lawn greenness variable yielded better results in

predicting N application amount than when using lawn area

alone (models FA3 and FA8). Both parameters of

NDVI_mean in the best (FA8) and second best model

(FA3) indicated a significantly positive relationship

between lawn greenness and annual N application amount,

when controlling the effect of lawn area.

Household characteristics are useful predictors of

household annual N application amount. Among the

household characteristics, housing value was the most

Fig. 5 The scatter plot of the logarithmically transformed annual

fertilizer N application rate (logN_ha_yr) and housing age. A linear

relationship is shown between those two variables, where the housing

age was less than 50 years (r2 = 0.23; p = 0.0018; N = 40)

Fig. 6 Primary lawn and secondary lawn
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significant one in predicting household annual N applica-

tion amount. The positive relationship indicates that higher

N application amounts are associated with houses of higher

property values (model FA4). However, housing value was

no longer significantly correlated with household annual N

application amount, when controlling the effect of lawn

area (model FA8). This implies that the reason why land-

owners with higher property values tend to apply more

fertilizers may be because they tend to have bigger lawns.

In fact, there is no significant relationship between housing

value and annual N application rate (model FH4).

For household annual N application rate, lawn greenness

is the most significant predictor and was the only variable

that significantly explained the variation in annual N

application rate in all three of the models with high Akaike

weights (i.e., FH8, FH7, and FH3). The relationship

between lawn greenness and annual N application rate was

nonlinear. Lawn greenness alone could only reflect about

20% of variation in N application rate. This may be partly

because lawn greenness measured by NDVI is influenced by

several environmental factors other than fertilization prac-

tices, such as soil type, lawn watering, and climate. To be

able to capture more variation in annual N application rate,

more factors should be included. For instance, our analyses

show that including the variable of lot size (FH8) or lawn

area (FH3) could yield better results. In this study, we didn’t

include one of the very important ecological variables, soil

type, because currently no soils data for the study areas are

available at the appropriate scale. Future research will

examine how lawn greenness can be used to predict lawn

fertilization practices by controlling for the effect of soils.

Lot size is the only indicator of household characteris-

tics that significantly explained the variation in N

application rate (model FH4). However, the negative

relationship is relatively weak. A previous study using the

same survey data found that there was no significant rela-

tionship between lot size and average N fertilizer

application rate, although this was at the subdivision level

(Law and others 2004). The possible reasons for this

inconsistency are worth being further explored.

Previous research at the subdivision level has found a

negative linear relationship between median housing age

and annual average N application rate (Law and others

2004). Our analyses at the household level indicate there is

a nonlinear relationship between housing age and N

application rate. A negative linear relationship was found

between housing age and logarithmically transformed N

application rate, when the housing age is less than 50 years.

This result is consistent with that of previous research (Law

and others 2004) that landowners of recent constructions

tend to apply higher rates of N fertilizers to help establish

lawns. Lawns around new housing are often characterized

by a ‘‘founder’s effect’’ (Grove and others 2006), where

homeowners work to rapidly establish landscape features

such as grass, shrubs, and trees. This flurry of landscaping

activity is often accompanied by significant inputs of fer-

tilizers and irrigation. In many cases, significant inputs of

fertilizers are also needed to compensate for poor soil

quality. As these landscape elements are established over

time, fertilizer inputs decline. For housing age greater than

50 years, there were only three observations, thus more

observations should be included before appropriate statis-

tical inference can be made.

In this study, we tested three indicators to measure

parcel lawn greenness, the mean, standard deviation, and

range of NDVI, respectively, among which we found the

first to be most useful predictor of household fertilization

practices. As empirically derived NDVI data can be

influenced by soil backgrounds and atmospheric conditions

(Huete and Liu 1994, Qi and others 1995), it might be

worthwhile to investigate the capacity of NDVI to predict

lawn greenness and household fertilization practices over a

larger extent in a multi-temporal way. Moreover, there are

other remotely sensed vegetation indices that can also be

used to measure lawn greenness, which we did not apply in

this study. However, a comparison of the capacities of

various vegetation indices would be valuable for appro-

priate index selection.

The object-oriented classification approach provided a

convenient and useful method for fine scale measurements

of parcel lawn area and lawn greenness. The methods used

in this study show promise for measuring spatial patterns of

lawns and lawn greenness over large urban watersheds, in

turn for measuring lawn fertilization practices using high

spatial resolution aerial and satellite imagery.

Management Implications

Our analyses show that household fertilization practices

can be effectively predicted by remotely sensed lawn

indices and household characteristics. This has significant

implications for urban watershed managers and modelers.

Firstly, our results indicated that parcel lawn area was a

very important predictor of household N application

amount. Including other indicators, such as lawn greenness,

further improved our predictions of N fertilizer application

amount. Secondly, models developed in this study could

potentially be used to predict nitrogen loads from resi-

dential lawn management over large urban watersheds

using high spatial resolution aerial and satellite imagery

and property data. This will allow for great advances in

nonpoint source assessment and modeling for urbanized

watersheds. Finally, this study provides a blueprint meth-

odology for characterizing parcel level vegetation and the

spatial patterns of household lawn fertilization practices.
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This could prove to be very valuable for watershed man-

agers in designing and targeting campaigns for local

outreach in pollution reduction efforts.
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